Received: 18 January 2019 | Revised: 22 May 2019 Accepted: 6 June 2019
DOI: 10.1002/smr.2209

SPECIAL ISSUE PAPER A\ 4B AE Software: Evolution and Process

Formal design of scalable conversation protocols using Event-
B: Validation, experiments, and benchmarks

Sarah Benyagoub®? © | Yamine Ait-Ameur? | Meriem Ouederni® | Atif Mashkoor®* ® |
Ahmed Medeghri®

LUniversity Abd El Hamid Ibn Badis,
Mostaganem, Algeria Abstract

2|RIT-INP, University of Toulouse, Toulouse, Contemporary interaction-based complex systems are often built by reusing existing

France distributed peers, which have to coordinate with each other to fulfill the client, system,

3Software Competence Center, Hagenberg

GmbH, Hagenberg, Austria and environment requirements. In this paper, we address the design of distributed sys-

4 Johannes Kepler University, Linz, Austria tems composed of peers (state-transitions systems) communicating through message
exchanges. We consider choreographies as the formal model, allowing a developer to

Correspondence

Sarah Benyagoub, IRIT-INP, University of describe and specify peers coordination as a set of conversations; ie, all sequences of

Toulouse, Toulouse, France. messages exchanged between the communicating peers. Proceeding this way requires

Email: sarah.benyagoub@enseeiht.fr L . o X . .
building neither the individual peers nor their composition as they may be obtained by

the choreography projection. The correctness of the preservation of such messages
exchanges by each peer obtained after projection is a key issue, known as the
realizability problem. Checking choreography realizability is mandatory to build third-
party applications with no coordination error, eg, absence of deadlocks, missing mes-
sages, and erroneous messaging order. In our previous work, we have proposed a set
of composition operators, allowing designers to build realizable choreographies that
are represented by conversation protocols (CPs). In this work, realizability is guaran-
teed by construction. We rely on the correct-by-construction Event-B method to
prove that each CP constructed using our operators is realizable. In this paper, we show
how our approach applies and scales to a set of use cases borrowed from the literature
and used by the research community. We also show that our approach allows to detect

failures and failure recovery in case realizability does not hold.

KEYWORDS

choreography realizability, conversation protocols, correct by construction, distributed systems,
Event-B, proof and refinement-based methods

1 | INTRODUCTION

In recent years, software systems have moved from monolithic applications to decentralized, heterogeneous, and independent subsystems, which
are designed and executed with different organizations in a distributed setting. In general, these communication systems are made of peers that
communicate through message exchanges; ie, sending and receiving messages are exchanged between peers taking part to the communication. It
is mandatory for peers to coordinate with each other. The idea of coordination consists in allowing a designer to view the third-party system inter-
action as a centralized one.

J Softw Evol Proc. 2020;32:e2209. wileyonlinelibrary.com/journal/smr © 2019 John Wiley & Sons, Ltd. 1 of 25
https://doi.org/10.1002/smr.2209

‘[1z0z/v0/£1] 18 [60TTws/z001°01/4Pdo/10p/ - €81°TST'8L0°0F 1 - 1BNsIoATup) 10]doy] souueror] Aq pajutig

2 of 25

BENYAGOUB ET AL.

A\AZ B A& Software: Evolution and Process

In a top-down design of distributed systems, the interaction among peers is usually defined using a global specification called choreography or
conversation protocols (CPs). This model specifies behavioral interactions among peers by describing the allowed sequences of sent messages. A
main concern that is already addressed by the research community is the verification of CP realizability. It refers to the verification whether there
exists a set of peers where their composition generates the same sequences of sent messages as specified by the CP. Benyagoub et al,*® this
realizability problem is undecidable in the most general setting® due to the possibly ever-increasing queuing mechanism and unbounded buffers.
The recent work of Basu et al® proposed conditions for verifying that a CP can be implemented by a set of peers communicating asynchronously
throughout FIFO buffers with no restriction on their buffer sizes. This work solves the realizability issue for a subclass of asynchronously commu-
nicating peers, namely, the synchronizable systems; ie, the system composed of interacting peers behaves equivalently by applying the synchro-
nous or asynchronous communication. A CP is realizable if there exists a set of peers implementing that CP; ie, they send messages to each other
in the same order as the CP, and their composition is synchronizable. In this paper,® the full checking of the CP realizability applies the following
steps: (a) peers projection from the CP; (b) checking synchronizability; and (c) checking equivalence between the CP and its distributed system. The
work presented in the paper® relies on model checking for systems with reasonable sizes (ie, number of states, transitions, and communicating
peers). By doing so, the existing verification methods suggest a posteriori realizability checking.

Recently, we introduced a refinement and proof-based approach where the CP realizability is guaranteed at the CP definition level. It has
identified some conditions, allowing to assert that a CP is realizable without requiring to build the synchronous or asynchronous peers composi-
tions. This approach suggests a priori realizability checking. A set of operators (sequence, choice, and loop) are composed to build correct-by-
construction realizable CPs. The approach has been proved using the Event-B method® on the RODIN platform.”

The objective of this paper is to present the validation of our proposed approach® using a benchmark of several realizable and nonrealizable
real-world case studies from the literature. We also focus on the scalability of the approach in the case of complex CPs. A reparation strategy
is also discussed.

The remainder of this paper is structured as follows. Section 2 gives a brief overview of the Event-B method. Section 3 introduces the formal
definitions and the background on which our proposal relies. Section 4 recalls the set of composition operators for building realizable CPs. Section
5 shows an excerpt of the sequence, choice, and loop composition development built using the RODIN platform. Section 6 discusses the validation
of our proposed approach applying on a set of standard benchmark case studies. Then, an assessment of the whole approach is given in Section 7.
Section 8 overviews the related work. Finally, we conclude the paper along with perspectives in Section 9.

2 | EVENT-B

Event-B%is a step-wise formal development method. Each Event-B model encodes a state-transition system where variables represent the state and
events represent transitions from one state to another. Set theory and first-order logic describe the manipulated concepts. Event-B is based on the
idea of step-wise model development with refining an initial model by gradually adding design decisions. A set of proof obligations (POs), based on
the weakest precondition calculus, is associated with each machine. The correctness of the development is guaranteed by proving these POs. The
refinement capability of Event-B makes it possible to decompose a model (thus a transition system) into another transition system with more design
decisions while moving from an abstract level to a concrete one. The refinement process preserves the proved properties, and therefore, it is not
necessary to reprove them in the refined transition system (which is usually more complex). The RODIN platform” is an eclipse-based integrated
development environment (IDE) for developing Event-B models. It is equipped with a set of provers for discharging the generated POs. In addition,
we can also use ProB® as an animator and model checker for analyzing the developed Event-B models in the RODIN development environment.

2.1 | Modeling

The Event-B language uses set theory and first-order logic. It has two main components: context and machine, to characterize systems. A context
describes the static structure of a system using carrier sets s, constants ¢, axioms A(s,c), and theorems T {s,c), and a machine describes the dynamic
structure of a system using variables v, invariants I(s,c,v), theorems T,,(s,c,v), variants V(s,c,v), and events evt (see Table 1). A list of events can be
used to model possible system behavior to modify state variables by providing appropriate guards in a machine. A set of invariants and theorems
can be used to represent relevant properties to check the correctness of the formalized behavior. To define the convergence properties, variants
can be used.

2.2 | Refinement

Refinement decomposes a model (thus a transition system) into another transition system containing more design decisions while moving from an
abstract level to a concrete one. It supports the modeling of a system gradually by introducing safety properties at various refinement levels. New
variables and new events may be introduced. These refinements preserve the relation between the refining model and the refined one while

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL
A\ 28 B '@ Software: Evolution and Process

TABLE 1 Model structure

Context Machine

ctxt_id_2 machine _id _2

Extends Refines

ctxt _id _1 machine _id _1

SETS SEES

s ctxt _id _2

Constants Variables

c %

Axioms Invariants

Alsc) Ils,c.v)

THEOREMS THEOREMS

Tds,c) Tmls,c,v)

END VARIANT
V(s,c,v)
EVENTS
Eventevt
anyx
whereG(s,c,v,x)
then

v:IBA(s,c,v,x,v,)
end

END

introducing new events and variables to specify more concrete behavior of the system. The defined abstract and concrete state variables are
linked by introducing gluing invariants.

2.3 | Proof obligations and proof process

To verify the correctness of an Event-B model (machine or refinement), the generated POs (issued from the calculus of substitutions) need to be
proved. A proof system allows to prove the POs. The main POs are listed in Table 2, in which the prime notation is used to denote the value of a
variable after an event is triggered. These POs require to demonstrate that the theorems hold, each event preserves the invariant (inductive), each
event can be triggered (feasibility), and if a variant is declared, it shall decrease. The proof process associated with these POs is inductive. The
initialization event and other model events must be preserved by the given invariants. Regarding refinement, two more relevant POs need to
be discharged. First, the simulation PO to show that the new modified action in the refined event is not contradictory to the abstract action
and the concrete event simulates the corresponding abstract event. Second, in the refined events, we can strengthen the abstract guards to spec-

ify more concrete conditions.

TABLE 2 Proof obligations

Theorems Als,c)=Tds,c)

Als,c)Al(s,c,v)=Tm(s,c,v)

Invariant A(s,c)AI(s,c,v)AG(s,c,v,x)/\BA(s,c,v,x,v,)
preservation Sls.cv)

Event Als,c)Al(s,c,vIAG(s,c,v.x)

feasibility :>Elv,.BA(s,c,v,x,vl)

Variant A(s,c)AI(s,c,v)AG(s,c,v,x)/\BA(s,c,v,x,v)

,

progress =>V(s,c,v)<V(s,c,v)

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL.

40f25
. A\AZ B A& Software: Evolution and Process
3 | BACKGROUND AND NOTATIONS

We use labeled transition systems (LTSs) as models for CP and peers.

Definition 1. (Peer)ApeerisanLTSP = <S;, s?, 5, T;> where Sis afinite set of states, s°<S is the initial state, X=5'u3"u{t} is a finite

alphabet partitioned into a set of send and receive messages, and a unit set of internal action. TCSxX>xS is the transition relation.
We write m! for a send message meX’ and m? for a receive message mes’. We use the symbol T for representing internal activities. A transition
is represented as s»s" where JeX. Notice that we refer to a state s €S as final if there is no outgoing transition from s f.
Definition 2. (Conversation protocol CP) A conversation protocol CP for a set of peers {Pi1, ...Pn} is an LTS
CP = < Scp, sgp, Lep, Tep > where Sep is a finite set of states and sgp € Scp is the initial state; Lep is a set of labels where a label

leLcp is denoted as m”%i such that 2; and P; are the sending and receiving peers, respectively, P; # #;, and m is a message on

which those peers interact. Finally, Tep CScpXLcepXScp is the transition relation. We require that each message has a unique sender

. PP) . ,
and receiver:V{m*®i, m~"7} C Lep:m = m' =P = P A P; = P;. CP s.

Definition 3. (Basic conversation protocol CPyLet CP, = < Scp, sgp, Lep, Tcp > be a given conversation protocol in CP. CP is a
m%i%

basic conversation protocol if and only if Tep, = {Scpb — Scp, } (ie, a conversation protocol with a single transition).CP, and
CPB denote, respectively, a basic conversation protocol and set of basic conversation protocols.

In the remainder of this paper, we denote

PPy
.. mo ’) . ope
e atransitionte Tep, asscp, — Scp, where s¢p, and Scp, are source and target states and m?7 is the transition label, and

o we refer to the set of final states as Sfcpb where the system can terminate its execution.

Definition 4. (Projection) CP projection operation, noted |CP, produces a set of peers LTSs ;= < §;, §,, Y, T, > obtained by
replacing in CP = < Scp, s‘g,D7 Lep, Tcp > (see Definition 2) each label (5. m, Py) € Lep with m? if j=i and with m? if k=i, otherwise
with T (internal action). Finally, this T transitions can be removed by applying the standard minimization algorithm.”

Definition 5. (Synchronous and asynchronous composition) Syss,n(| CP) and Sys,»{| CP) represent the synchronous and asynchro-
nous compositions, respectively, of the peers of |CP obtained by the projection of CP.

Definition 6. (Realizability) This realizability definition is borrowed from Basu et al. It is decomposed into the conjunction of three

subproperties:

¢ Equivalence (=). CP=Sys,,{|CP) if CP and Sys,.(|CP) have equal sequences for exchanged messages, ie, trace equivalence.

e Synchronizability. The synchronous system Syss,n{|CP) and asynchronous system Syss,nc(]CP) are synchronizable if the system
behavior is same in both synchronous and asynchronous communications.

o Well formedness (WF). Sys,c (|CP) is well formed if all the running unbounded queues of the asynchronous system become
empty at the end of the asynchronous composition.According to Basu et al,” for each deterministic CP, the realizability property
is guaranteed if the conjunction of the previous properties holds. We writeRealizability = Equivalence A Synchronizability A WF.
We define R as a set of realizable CP. A proof of correctness of global system realizability is given in Basu et al.® This proof has
been formalized using Event-B in Farah et al. *°

3.0.0.1 | Remark

The proofs provided by Basu et aP’ and formalized in Event-B by Farah et al'® require to build the projections SySsync(LCP), SySsync(| CP), and their
compositions. To avoid building compositions for the verification of realizablity, we have set up an incremental verification of realizability using a
correct-by-construction approach while building CP. Sufficient conditions have been identified at the CP level and do not require to build the pro-
jection nor to build the peers synchronous and asynchronous compositions. The approach is scalable; it has been formalized using Event-B. All
details of the approach can be found in our previous work.*

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL

WILEY §5ftware: Evolution and Process
4 | ALANGUAGE FOR REALIZABLE CONVERSATION PROTOCOLS

This section summarizes the results of our previous work.! It gives definitions of the set of operators allowing to build correct-by- construction
realizable CP and identifies the sufficient conditions to build such CP.

41 | CP composition operators

The defined composition operators are B> o) (sequence), ®) (branching), and B, (iteration) where sf,, € Sh,. Each expression of the form
®(0p, sfcp)(CP, CPy) assumes that the initial state of CP,, is fused with the final state sfcp Informally, we can say that CP,, is appended to CP at state sfcp.

lep,
Definition 7. Sequential composition g, - Given a CPeCP, a state scp € S‘EP, and a CP,in CPB where T¢p, = {Scp ci'iscpb}, the

sequential composition CPs = ® (s 5., (CP, CPy) is defined as

f
>scP

' lep,
e Sep. = SCPU{SCPb| ScP—Scp, € Tcpb}y
o Lep, =Lepu{len, }
lep,
o Tep, = Tcp U Scp —Scp, (»
b
_ (cf !
* St = (St {SCP})U{SCP,,}~

Here, CP, must be executed after CP starting from sca

Definition 8. Choice composition B o,y Given a CPeCP, a state scpeShy, a set {CP, € CPBJi = [1..n], ne N} such that

len,
vV Tepy, Tep, = {scpﬂ'scpm}, the branching composition CP, = ® (; s.,) (CP, {CR,i}) is defined as

, , lepy;
e Scp, = SCPU{ Scp s e Scpbn‘ ScP—Scp, € Tep, ¢
o Lep, =lepuitp,, - lcpy,)
lepgy ler,,
® Tep, =TcpUqScp—Scp, s - SCP— Scpy,

L]

SE:A = (Stp {SCP})U{SQ:H,U - S(V?Pb" }
Here, CP must be executed before {CP,;}, and there is a choice between all {CPy;} at sca

ey .
Definition 9. Loop composition Bost)- Given a CPeCP, a state scp € Skp, and a CP,eCPB, with Tcp, = {scpﬁs cn,} and sep, € Scp,
then the loop composition CP:, = ®(os.,) (CP, CR,) is defined as

e Scp, =Scp,
o Lep, = Lepuite, },
IC% '
® Tep, = Tcpuqg Scp—Scp, ¢
o S, =S[,.The condition s'CPb € Scp means that the target state of CP, is a state of CP. It defines a cycle in the built CP¢), thus a
loop and an iteration. The final states remain unchanged.

4.2 | Realizable-by-construction CP

As mentioned previously, our intention is to avoid a posteriori global verification of realizability by building synchronous and asynchronous peers
compositions. We set up an incremental verification of realizability using a correct-by-construction approach. Building CP using the aforemen-
tioned operators does not yet guarantee its realizability. Indeed, the definitions of the previous operators require additional sufficient conditions
to guarantee realizability.

4.2.1 | Sufficient conditions for correct-by-construction realizable CP

We recall the definitions of the identified sufficient conditions (ie, Conditions 1, 2, and 3) entailing realizability.
These conditions are based on the semantics of the messages ordering and exchange.
Condition 1. (Deterministic choice (DC)) A given CP is deterministic, denoted CPeDC, if and only if YspeScp,VSCP'€Scp,VSCP''€Scp,
H{Scpnﬁpj Seps and sp "ﬁ[sgp} C T ¢p, such that sCP'#sCP"".

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

6 of 25

BENYAGOUB ET AL.

A\AZ B '@ Software: Evolution and Process

Condition 2 (Parallel-choice freeness (PCF)) 2. Let PCF be the set of CPs free of parallel choice. Then, CPePCF if
, " [PPy ”
Vscp € Scp, V%P € SCP N VSCPG SCPa H{Scprn—>lscp, and Scpm—k> SCP} C TCP such that Pi = Pk and SCP,?&SCP”.
This condition imposes that when more than two transitions exit a given state, the PCF condition imposes that all the sending peers are the
same. In other words, it defines a form of broadcasting.

Condition 3 (Independent sequences freeness (ISeqF)) 3. The condition related to two consecutive message exchanges at the CP

|,11

level is declined in two conditions corresponding to two orders of sending messages. According to Finkel et al,”" the first condition

preserves the order of both sending and receiving messages by defining a ring structure. The second condition preserves the order
of sending messages, and no constraint is imposed on the messages receiving order.

— Send-receive messages order preservation. Let ISegF be the set of CP free from independent sequences. Then, CP<ISeqgF if and only if

) " =7, ;R
Vscp € Scp, Vsep € Scp, VScp € Sep s iﬂ{s;pm—> Jscp, andscpm—> sCP} C Tepsuch that?; # 2.

This condition preserves the order of sending and receiving messages. It enforces a ring communication peers topology.

Sending messages order preservation. Let ISegF be the set of CP free from independent sequences. Then, CPelSeqF if and only if

PR

' " (eo i
Vscp€ Scp, YScp € Scp, scp € S, ﬂ{scpmp—’ "&p. andsc,” — Scp} C Tepsuch that? # Pand?; # Py.

— This condition preserves the order of sending messages.

All these conditions are structural conditions defined at the CP level. They involve conditions neither on the synchronous nor on the asynchro-
nous projections and/or compositions. These sufficient conditions are checked at the CP level.

4.2.2 | Realizable-by-construction CP theorems

The theorems—established in our previous work'—rely on the previously introduced sufficient conditions. They ensure the realizability of a CP

built incrementally using each of the defined operators. These theorems are defined as follows.

1. Any basic conversation protocol CP, is realizable.
e Theorem 1. YCP,eCPB,CP,eR

2. The sequence composition operator preserves realizability when ISeqF property holds.
e Theorem 2. YCPeCPVYCP,eCPB,CP € RACP, e RACPs = N)(CP, CPp) €1SeqF—CPs R
7 CP/

3. The choice composition operator preserves realizability when PCF property and ISeqF properties old for each transition if the branch.
e Theorem 3. V CPeCP VY CPpset={CP,ecCPBli=[2.n,neN}, CPeRACP,set CRACP = ®<+?52P)(CP, CPyset) € DCACP
+€lSeqFACP,ePCF =CP,eR

4. The loop composition operator preserves realizability ISeqF property holds.
e Theorem 4. YCPeCPYCP,eCPB, CP € RACP, € RACP, = ®<U‘SEPJ(CP, CPy) €1SeqgF— CP,, €R

The correctness of these theorems has already been proven in our previous work® using the Event-B method on the RODIN platform. The
proof is based on the structural induction. Refinement is used to introduce gradually equivalence, synchronizability and well-formedness proper-
ties of Definition 6.

5 | AFORMAL MODEL FOR REALIZABLE CP: REFINEMENT-BASED REALIZABILITY

This section presents the Event-B developments modeling the defined composition operators. An Event-B event is associated with each operator
allowing to build realizable CP. Each event (Initialization, Add_Sequence, Add_Choice, and Add_Loop) is guarded by the previously identified sufficient
conditions.

The Event-B model is defined as two parts. The context part, presented in Sections 5.1 and 5.2, contains the relevant axioms defining peers,
CP, etc, together with sufficient conditions. These definitions and conditions are used to define the behavioral part of the model and to prove its

The whole Event-B developments are available at http://yamine.perso.enseeiht.fr/EventB\mathunderscoreRealisability_Models.pdf.

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL

A\ 28 B DA Software: Evolution and Process

correctness since they provide with hypotheses. The second part of the model (see Section 5.3) describes in Event-B the state transitions systems
using the defined set of operators. Finally, the formal development establishing realizability is described in Section 5.4.

5.1 | Basic definitions

The basic definitions of the notions of conversation protocols, peers, messages, etc, and the various sets and relations needed to build our devel-
opment are given in a single Event-B context presented in Listing 1.

Context
Sets
PEERS, — — set of peers
MESSAGES, — — set of exchanged messages
CP _STATES, — — set of possible states for CP
Constants
CPs_B, — — constant set containing of basic CP transitions
SOURCE_STATE, — — function returning CP source state
DESTINATION_STATE, — — function returning CP target state
LABEL, — — function returning CP label
PEER_SOURCE, — — function returning C P source peer
LAST_SENDER_RECEIVER _PEERS, —— function returning CP last sender and receiver peers
NDC, — — constant set of non deterministic CPs
DC, — — constant sel of deterministic CPs
ISeqF, — — constant set of CPs satisfying the I.SeqF condition
PCF, — — constant set of CPs satisfying the PCF condition
Axioms
— — Basic conversation protocols definition
axml_CP :CPs_BC CP_STATES X PEERS X MESSAGES Xx PEERS xCP_STATES XN

Listing 1: Definition of sufficient conditions

axm1_CP defines the notion of basic conversation protocols defined as a set of tuples of the form (source state, sending peer, exchanged mes-
sage, receiving peer, target state, and index) where the index is a label for the defined transition. This label has been added to ease the manipu-

lation of transitions in the proof process.
5.2 | Sufficient conditions

Note that all set definitions of the sets for nondeterministic CP, ISeqF, and PCF properties are given using an equivalence relationship decomposed
into two implications. We have chosen this decomposition for proof purpose.

e Deterministic choice (DC) is defined from nondeterministic choice (NDC) transitions in axioms axm2_Condl, axm3_Cond1_1, and
axm3_Cond1_2 of Listing 2. Then, the deterministic transitions DC are obtained by subtraction in axiom axm4_Cond1.

— — Determinstic CP definition DC

axm2_Condl : NDCCCPs_B

axm3_Condl_1 : ¥ Transl, Trans2- (
Transl € CPs_BA Trans2 € CPs_B A
SOURCE_STATE(Transl) = SOURCE__STATE(Trans2) A
LABEIL(Transl) = LABEL(Trans2) a
DESTINATION_STATE(Transly# DESTINATION_STAT E(Trans2)
)
=
{Transl, Trans2} C NDC

axm3d_Condl_2 : ¥ Transl . Transl € NDC
=
d Trans2 € NDC .

(

SOURCE_STATE(Transl)= SOURCE_STATE(Trans2) A
LABEL(Transl)= LABEL(Trans2) A

DESTINATION _STATE(Transl)% DESTINATION _STAT E(Trans2)
)

axmd_Condl : DC=CPs_B\NDC

Listing 2: Definition of Deterministic CP condition

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

8 of 25

BENYAGOUB ET AL.

A\AZ B A& Soft\ware: Evolution and Process

e The definition of ISeqF is given by axioms axm5_Cond2, axmé_Cond2_1, and axmé_Cond2_2 of Listing 3. It asserts that the source peer
PEER_SOURCE(cp_b) of a cp_b is either the last sender or receiver peer of cp_b.

— — Independent sequence freeness definition ISEQF
axm5_Cond2 : ISeqF CCPs_B
axmb_Cond2_1: ¥ ep_b (cp_ heCPs_B A
PEER_SOURCE(cp_b)e LAST_SENDER_RECEIVER PEERS(SOURCE_STATE(cp_b)
)

=
{ep_b} C ISeqF

axmb_Cond2_2 . Vep_b.cp_be ISeqF

=
PEER_SOURCE(cp_b) € LAST_SENDER_RECEIVER PEERS(SOURCE_STATE(cp_h)))

Listing 3: Definition of ISeqF condition

e Similarly, in order to define the PCF property, in axioms axm7_Cond3, axm8_Cond3_1, and axm8_Cond3_2 of Listing 4, the sender peers
PEER_SOURCE(Trans) of the transitions involved in a branch are compared.

— — Parallel Choice freeness PCF

axmT_Cond3 : PCF € CP_STATES — P(CPs_B)

axm8_Cond3_1 . ¥ Transl, Trans2 . (
Transl e CPs_B A Trans2 e CPs_B A
SOURCE_STATE(Transl)= SOURCE__STAT E(Trans2) A
PEER_SOURCE(Transl)= PEER_SOURCE(Trans2) A
DESTINATION _STATE(Transl) # DESTINATION _STAT E(Trans2)
)
=
{Transl, Trans2} C PCF(SOURCE_STAT E(Transl))

axm8 Cond3_ 2 : ¥ Transl, Trans2, s (
se CP_STATES A
Transl € PCF(SOURCE_STATE(Transl)) A
Trans2 € PCF(SOURCE_STATE(Transl)) A
Transl # Trans2 A
s =SOURCE_STATE(Transl) A
5§ =SOURCE_STATE(Trans2)
)
=
PEER_SOURCE(Transl)= PEER_SOURCE(Trans2) a
DESTINATION_STATE(Transl)# DESTINATION_STATE(Trans2)

Listing 4: Definition of PCF condition

5.3 | Composition operators

Event-B definitions of the events encoding the defined operators (sequence of Definition 7, branch of Definition 8, and loop of Definition 9) are
given in this section. Each event is guarded by the defined sufficient conditions such that the CP and the projected peers are composed if and only
if the guards hold.

e State and initialization. This event initializes the state variable BUILT_CP (in action actl of Listing 5) as an empty initial CP. This variable is
updated using the defined composition operator, under the identified sufficient conditions. It also initializes the variables Prophecy _ of _ Sent
_ Messages and Number _ of _ send defining the expected (prophecy) number of exchanged messages and the number of already sent messages.
These variables are introduced for proof purposes. When the defined variant is null (Q), ie, Prophecy _of _ Sent _ Messages—Number _ of _ send=0

(null), all the messages should be consumed.

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL

A\ 28 B DA Software: Evolution and Process

Variables
BUILT _PEERS,
Number_of _send,
Prophecy_of Sent__Messages
Invariants
invl : BUILT CPC DC
inv2 1 Number _of send € N
inv3 . Prophecy_of Sent__Messages € N
Variant
Prophecy_of _Sent_Messages — Number__of__send

Event Initialisation £
Any
Where
Then
actl : BUILT _CP =@
act2 : Number_of send =0
actd : Prophecy of Sent Messages 1€ N

End

Listing 5: An excerpt from the initialization event

e Add_Sequence operator. Add _Sequence event in Listing 6 corresponds to the sequence operator (Definition 7). It allows to add a basic CP,
given as a parameter, namely, Some_cp_b to the CP under construction (using union operation in action act1). It also sets up the new final state
in action act2. This event is triggered only if the relevant conditions hold (guards). In particular, it clearly states that the independent sequence
property 1SeqF must hold before adding another CP in sequence in guard grd3.

I
Event Add_ Sequence £ Convergent

Any Some_cp_b

Where
grdl :Some_cp_b e DC
grd2 -MESSAGE(Some_cp_b) # End__message
grd3 (BUILT_CP # @ = Some_cp_b € 1SeqF
grd4 :SOURCE_STATE(Some_cp b)) € CP__Final__states

Then
actl : BUILT CP :=BUILT CPU {Some_cp b}
act2 : CP__Final_states .= (CP__Final_statesU
{DESTINATION_STATE(Some_cp_ b\
{SOURCE_STATE(Some_cp_b)}
act3 . Number_of _send := Number_of__send + 1

End

Listing 6: An excerpt from the sequence composition operator

e Add_Choice operator. The Add_Choice event of Listing 7 encodes the choice operator (Definition 8). It adds a set of deterministic basic CP,,
given as parameter, namely, BranchesCDC. Moreover, any basic CP, namely, branch belonging to Branches with same source state and sender
peer, shall satisfy the ISeqF and the PCF properties (3rd3 and grd4) to fulfill the sufficient conditions related to choice operator. act1 and act2
update the built CP and the final states accordingly.

I
Event Add_ Choice £ Convergent

Any Branches, branch

Where
grdl :Branches C DC
grd2 :branch € Branches
grd3 :BUILT CP # @ = branch € I SeqF
grdd :Branches = PCF(SOURCE__STAT E(branch))
grd3 : SOURCE_STATE(branch) € CP__Final _states
grd6 : MESSAGE(branch) # End_message

Then
actl : BUILT_CP := BUILT_CP \U Branches
act2 . CP_Final_states .= (CP__Final_statesu
BR_CP_FINAL_STATES(SOURCE_STAT E(branch)))N{SOURCE_ ST AT E(branch)}
act3 : Number_of _send := Number_of _send + 1

End

Listing 7: An excerpt from the choice composition operator

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

10 of 25 =irale BENYAGOUB T AL.
A\AZ B 2A'& Software: Evolution and Process

e Add_Loop operator. Add_Loop event of Listing 8 formalizes the loop operator (Definition 9) by adding a loop transition (self loop or cycle loop)
given as parameter, namely, Some_cp_b to the current BUILT_CP in act1. Moreover, it requires that the ISeqF property must be held in grd2 and
grd3. Note that the grd4 differentiates between the Add_Loop event and the Add_Sequence event by enforcing the source and destination states
of a new transition Some_cp_b that is already existing states of the built CP.

Event Add_Loop 2 Convergent
Any Some_cp_b
Where
grdl :Some_cp_b e DC
grd2 :BUILT_CP # @ = Some_cp_b € [.SeqF
grd3 3 Trans.(Trans € BUILT_CP) A
(

(PEER_SOURCE(Some_cp_b)= PEER_SOURCE(Trans))
(PEER_DESTINATION (Some_cp_by= PEER_SOURCE(Trans))
)
grd4 :3 Trans.(Trans € BUILT _CPYADESTINATION_STATE(Some_cp b)= SOURCE__STAT E(T'rans)
grd5 : MESSAGE(Some_cp b)# End
grd6 : SOURCE_STATE(Some_cp b) e CP__Final _states
Wit];l“
Then
actl : BUILT_CP := BUILT_CP U {Some_cp_b}
act2 . Number_of _send .= Number_of _send + 1

End

Listing 8: An excerpt from the loop composition operator

e Add_End event.
When the prophecy variable (declared as a state variable) becomes null (0) grd1, the Add_End event of the Listing 9 will be enabled such that its
execution means the end of the CP construction. Add_End event adds a new transition exchanging “End” message between two peers to the
current built CP in actl.

T

Event Add_ End £

Any Some_cp_b

Where
grdl : Prophecy_of_ Sent__Messages — Number_of _send =0
grd2 :SOURCE_STATE(Some_cp_b) € CP_Final_states
grd3 : MESSAGE(Some_cp_b)= End

Then
actl : BUILT CP := BUILT CP U {Some_cp b}

End

Listing 9: An excerpt from the End composition operator

5.4 | Proving realizability

The above section showed the Event-B models corresponding to the definition of the composition operators we have introduced. These defini-
tions are structural ones; they are guarded by the sufficient conditions we have identified. The realizability preservation property of these oper-
ators is not yet established in these definitions.

In order to make this paper self-contained, we borrow from Benyagoub et al* the information related to the formal development to prove
realizability preservation proof process. Below, we summarize this proof process and describe the whole development for the sequence operator.
The development for all the other operators can be downloaded from http://yamine.perso.enseeiht.fr/EventB_Realisability_Models.pdf.

5.4.1 | The refinement strategy

Our Event-B formal development heavily relies on refinement. We consider that a finite number of messages is exchanged (we do not deal with
infinite number of messages) through the definition of a prophecy variable.*> We have introduced in refinement different levels the properties

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL

11 of 25
AW B A Soft\ware: Evolution and Process

defining realizability, ie, first, equivalence, and then, synchronizability, and finally, well-formedness. These properties are introduced as invariants
at different levels, and the proof of invariant preservation is inductive, based on the numbers of exchanged messages.

The development results in the following steps.

Abstract (root) model. It defines the conversation protocols and introduces basic CP. Each composition operator is defined as an event, which
incrementally builds the final CP obtained by introducing a final state. All the built CP satisfy an invariant requiring DC (condition 1). This model
also declares a prophecy variable 12 as a state variable. This variable defines an arbitrary numbers of exchanged messages and is used to define

a variant in order to further prove well formedness. This model corresponds to the Event-B statements presented in Sections 5.2 and 5.3.

First refinement: the synchronous model. The second model is obtained by refining each event (composition operator) to define the synchronous
projection. A gluing invariant linking the CP to the synchronous projection is introduced. The equivalence property is proved at this level. It is
defined as an invariant preserved by all the events encoding a composition operator. This projection represents the synchronous system; it pre-
serves the message exchanges order between peers and hides the asynchronous exchanges.

Second refinement: the asynchronous model. The last model introduces the asynchronous projection. Each event (composition operator) is
refined to handle the asynchronous communication. Synchronous and asynchronous projections are linked by another gluing invariant. Sending
and receiving actions together with queue handling actions and variant decreasing of the prophecy variable are introduced. At this refinement
level, they are necessary to prove synchronizability and well formedness expressed as invariants. The refinement of the synchronous models in

an asynchronous model eases the proof process.

At the last refinement level, realizability—defined as the conjunction of equivalence, synchronizability, and well-formedness properties—is
proved thanks to invariants preservation and to the inductive proof process handled by Event-B using the RODIN platform.

Next, we show an extract of the development for the sequence operator.

Remark
The equivalence, synchronizability, and well-formedness properties are modeled using relations defined using comprehension. We have intro-
duced the EQUIV, SYNCHRONIZABILITY, and WF sets. A CP fulfilling one of these properties shall belong to the corresponding set.

5.4.2 | First refinement: Synchronous model

The objective of the first refinement is to build the synchronous projection corresponding to Definition 5. Here, again, before building this pro-
jection, some property definitions are required, in particular for equivalence (=), denoted EQUIV in Event_B models.
Required properties for synchronous projection (cf Listing 10).

CONTEXT LTS_SYNC_CONTEXT
EXTENDS LTS_CONTEXT
SETS

ACTIONS.

CONSTANTS
CPs_B,
EQUIV,

AXIOMS
axml : CPs_SYNC_BC
CP_STATES X ACTIONS X MESSAGES X PEERS X PEERS X ACTIONS X MESSAGES x CP_STATES x N

— — Equivalence of CP and Synchronous projection

axm_la: EQUIV € CPs_B+» CPs_SYNC_B

axm__l.al : EQUIV = {Trans — S_Trans |
Transe CPs_B A S_Trans€ CPs_SYNC_B A
SOURCE_STATE(Trans)=S_SOURCE_STATE(S_Trans) A
DESTINATION_STATE(Trans)=S_DESTINATION_STATE(S_Trans) A
PEER_SOURCE(Trans)=S_PEER_SOURCE(S_Trans) A
PEER _DESTINATION(Trans)=S_PEER DESTINATION(S_Trans) A
MESSAGE(Trans) = S_MESSAGE(S_Trans) A
INDEX(Trans)=85_INDEX(S_Trans)

End

Listing 10: An excerpt from the synchronous context

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

12 of 25 =irale BENYAGOUB T AL.
A\AZ B 2A'& Software: Evolution and Process

The definition of the state-transitions system corresponding to the synchronous projection is given by the set CPs_SYNC_B defined by axiom
axm1 of Listing 10. Actions (send ! and receive ?) are introduced. Then, two other important axioms, namely, axm_1.a and axm_1.a1, are given to
define the equivalence between a CP and its synchronous projection. The EQUIV relation is introduced. It characterizes the set of CP that is equiv-

alent to their synchronous projection. axm_1.al formalizes the first item of Definition 6 of Section 3.

Invariants
invl : BUILT _SYNCHRONE CCPs_SYNC_B
inv_l.a: ¥V Trans- 3 .S_Trans - (Trans € BUILT_CP A S_Trans € BUILT_SYNCHRONE A BUILT_CP#+ @)

=
Trans — 8_ Trans € EQUIV

Listing 11: An excerpt from the invariants of the synchronous model.

The synchronous projection (cf Listing 12). The first refinement introduces the synchronous projection of the BUILT_CP defined by variable
BUILT_SYNCHRONE in Listing 12.

Listing 11 introduces through invariant inv_1.a, the equivalence (=) property of Definition 6. The invariant requires equivalence between a CP
and its synchronous projection. Invariant inv_1.a of Listing 11 describes the equivalence property using the EQUIV relation defined in the context

of Listing 10. So one part of the realizability property (ie, CP=Sys;,nc) of Definition 6 is already proved at this refinement level.

r
Event [Initialisation £ .

Event Add_ Sequence Refines Add_ Sequence £ Convergent
Any
S_Some_cp_b, Some_cp_sync_b
Where
grdl . Some_cp_sync_be CPs_SYNC_B
grd2 : §_SOURCE_STATE(Some_cp_sync_b) € CP_Final__states
grd3 BUILT_CP#@ = S5_Some_cp_beE ISeqF
grdd : MESSAGE(S_Some_cp_b)# End
grd5 . MESSAGE(S_Some_cp_b)=S_MESSAGE(Some_cp_sync__b)

With
Some_cp_b : Some_cp_b=S5_Some_cp_b
Then
actl : BUILT_CP :=BUILT_CP U {S_Some_cp_b}
act2 . BUILT_SYNCHRONE :=BUILT_SYNCHRONE v {Some_cp_sync_b}

End

Listing 12: An excerpt from the synchronous model.

The event Add_Sequence or sequence operator of Listing 12 refines the same event of the root model of Listing 6. It introduces the
BUILT_SYNCHRONE set corresponding to the synchronous projection as given in Definition 5. Here, again, the Add_Sequence applies only if the
conditions in the guards hold. The With clause provides a witness to glue Some_cp_b of CP with its synchronous version.

5.4.3 | Second refinement: Asynchronous model

The second refinement introduces the asynchronous projection with sending and receiving peers actions. Well formedness and synchronizability,
characterized in Listing 13, remain to be proved in order to complete realizability preservation.

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL 13 of 25

AW B A Soft\ware: Evolution and Process

CONTEXT LTS_ASYNC_CONTEXT
EXTENDS LTS_SYNC_CONTEXT
SETS
A_STATES, ...
CONSTANTS
PEERs_B,
R_TRACE_B,
SYNCHRONISABILITY,
WF,

AXIOMS
axml : PEERs._ BC (A_STATESX ETIOX N)—» A _STATES
axm2: R_TRACE. BCCP_STATESX PEERS x MESSAGES X PEERS X CP_STATES x N

— — Synchronisability property

axm_1.b: SYNCHRONISABILITY e CPs_SYNC_B» R_TRACE_B

axm__1.61 ; SYNCHRONISABILITY = {S§_Trans — R_Trans |
S Transe CPs_ SYNC_B A R_Transe R_TRACE_B A
S _INDEX(S_Trans)= R_INDEX(R_Trans) A
S_SOURCE_STATE(S_Trans)= R_SOURCE_STATE(R_Trans) A
S_PEER_SOURCE(S_Trans)=R_PEER_SOURCE(R_Trans) A
S_MESSAGE(S _Trans)=R_MESSAGE(R_Trans) A
S_PEER_DESTINATION(S _Trans)=R_PEER_DESTINATION(R_Trans) A
S_DESTINATION_STATE(S Trans)= R_DESTINATION _STATE(R_Trans) A
S_INDEX(S_Trans)y=R_INDEX(R_Trans)

}

— — Well formedness property

axm_l.c : WFe A_TRACES - QUEUE

axm_l.cl : ¥ A_TR, queue - (A_TR € A_TRACES A gueue € QUEUEFE A queue = @)
=
A_TR — queue € WF

End

Listing 13: An excerpt from the asynchronous context.

The asynchronous Projection (cf Listings 14, 15, 16, and 17). The invariants associated with this model are presented in Listing 14. In particular,
the properties of synchronizability, expressed in invariant inv_1.b used in Definition 6 (Sync(Syssyne SYS asynd), and of well formedness, expressed in
invariant inv_1.c used in Definition 6 (WF(Syssync)), are introduced in the invariant of this refinement level. These two properties complete the
proof of realizability.

Invariants
invl : BUILT_SYNCHRONE CCP_SYNC_RB
inv2 : REDUCED_TRACE CR_TRACE_B
intd : A_TRACE C A_TRACES
inv_1.b:V.S_Trans - 3 R_Trans - (S_Trans € BUILT_SYNCA R_Trans € REDUCED_TRACE)

=
S_Trans — R_Trans € SYNCHRONISABILITY
inv_lec : Y A_Trans - (A_Trans € A_TRACES A MESSAGE(Last_cp_ trans)= End A A_TRACE # @)
=
A_ Trans — queue € WF
invb . BUILT_ASYNCHRONE C PEERs_B

Listing 14: An excerpt from the asynchronous invariants.

At this level, each event corresponding to a composition operator is refined by three events: one to handle sending of messages (Add_Send)
Listing 15, one for receiving messages (Add_Receive) on Listing 16, and a third one (Add_Sequence_Send-Receive) in Listing 17 refining the abstract

Add_sequence event. Sending and receiving events are interleaved in an asynchronous manner. They are defined as follows.

e The Add_Send event defines sending of a message. The sending peer sends a messag attached to the queue of the receiving peer (act2). The
asynchronous trace is updated (act1), and the current state is updated to the next state (act3). In this asynchronous message exchanges, several

sending messages can be triggered if the given guard (grd1) of the event is enabled.

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL.

Evolution and Process

I
Event Add_Send 2
Any
send Its_s.Its _d msg, index
Where
grdl : dsend__st_ src, send__st_dest-((Its__s +— send_st_src) € A_GS A ((send__st__src —
(Send v+ msg— Ifts_d) v~ index) — send_st_dest) € CPs_ASYNC_BA ...

Then
actl 1 A_TRACE = A_TRACE U {Reduces_Trace_ states v Si__Num
Send — lts_s +— msg v lts_d — Reduces_Trace_states —
(S81_Num+ 1)— A_Trace_index

act2 . queue, back .= queue U {It5s_d v msg back}, back + 1
act3 1 A_GS = A_Next_States({send} — A_GS — queue)

End

Listing 15: An excerpt from the asynchronous model - Add_Send event.

e Similar to the previous event, Add_Receive consumes the messages available in the queue associated with each peer (act2). In the same manner,
the asynchronous trace is updated (act1). Again, in this asynchronous message exchanges, several receptions of messages can be triggered if
the guards of the event are true.

Event Add_ Receive =
Any
send,receive, Its_s, Its__d,msg,index
Where
grdl : queue £ @
grd2 @ lts_d v+ msg v front € queue
grd3 : 3 receive__st_src,receive_st_dest-(((Its_d — receive_st_src) € A_GS) A
((receive_st_ src — (Receive — msg v~ l1s_s5) — index) v receive_st_dest) e CPs_ ASYNC_BnA ...

Then
actl : A_TRACE := A_TRACE U { Reduces_Trace_ states — St_ Num —
Receive v Its_s v msg — lts_d — Reduces_Trace_states — (St_Num+ 1) — A_Trace_index

act2 : queue ;= queue \ {Its_d v~ msg v front}

End

Listing 16: An excerpt from the asynchronous model - Add_Receive event.

e Once a pair of send and receive events has been triggered, the event Add_Sequence_Send-Receive refining the Add_Sequence event records that
the emission-reception is completed.
Traces are updated accordingly by the events; they are used for proving the invariants. Since this event refines the abstract Add_Sequence
event, it guarantees that the variant decreases.
Observe that the witnesses given in the With clause ensure the conversation protocol and its synchronous and asynchronous projections are
correctly glued, it defines the simulation relationship induced by the refinement.

Event Add__Sequence__Send — Receive = Convergent
Refines Add_ Sequence
Any
A_Some_cp b, A_Some_cp_sync_b,Send_cp_async_b, Receive_cp_async_b, R_trace_b
Where
grdl : A_MESSAGE(Send_cp_async_by=A_MESSAGE(Receive_cp_async_h)
grd2 : ACTION (Receive_cp_async_b) = Receive N ACTION (Send__cp_async_b) = Send
grd3 : BUILT _CP+# @ = A_Some_cp_be ISeqF
zrdd : MESSAGE(A_Some_cp by=A MESSAGE(Send_cp_async_b)

With
S_Some_cp b S _Some _cp b=A Some_cp b,
Some_cp_sync_b . Some_cp_sync_b= A_Some_cp_sync_b
Then
actl : BUILT_CP := BUILT_CP U{A_Some_cp_b)}
act2 : BUILT_SYNCHRONE :=BUILT_SYNCHRONE U {A_Some_cp_ sync_b}
actd : BUILT ASYNCHRONE = BUILT_ASYNCHRONE U {Send_cp_async_ b} U {Receive_cp_async_ b}
actd : REDUCED _TRACE := REDUCED_TRACE U {R_trace_b)

End

Listing 17: An excerpt from the asynchronous model - Add_Sequence event.

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL

15 of 25
AW B A Soft\ware: Evolution and Process

The same development chain has been set up for other operators. The whole Event-B development has been proved using the RODIN
platform.

6 | CASE STUDIES

In our previous work,! we have given proofs of the presented approach. In this paper, our objective is to show that the approach is not only ver-
ifiable but also valid. Indeed, we have taken several benchmarks from the research area literature related to the design of distributed systems
based on realizability property. All these benchmarks have been used to validate our Event-B model. They have been defined as instances of
the generic model summarized in the previous section. These instances are defined in Event-B by defining set extensions of the deferred (arbi-
trary) sets used in the generic model and by providing witnesses to the parameters of the ANY Event-B clause used in each event defining an
operator.

This section is divided in two parts. First, in order to explain how instantiation of the generic model is set up, we give a detailed description of
the instantiation process using a realizable case study in Section 6.1 and nonrealizable case study in Section 6.2. Then, in a second part, we discuss
the obtained results for other selected benchmark case studies. Please note that the instantiation of the generic model is checked using the
RODIN platform and the ProB animator.

6.1 | A realizable CP: The controlled evolution of process choreographies

Description. According to Rinderle et al,*® the CP behavior is depicted in Figure 1 and describes the following scenario. “Initially (state so), the
accounting department peer (A) receives an order message sent by the buyer peer (B) (state s;). Then, this message is forwarded to the logistics
department peer (L) via a deliver message (state s,). Next, the logistics department peer answers with a Deliver_Conf message (state s3). When the
accounting department peer (A) receives this message, it forwards it to the buyer via a delivery message (state s,). At this level (state s,), an alter-
native holds. Indeed, the accounting department peer (A) may receive a Get_Status message sent by the buyer (B) peer (state s5), followed by an
invocation of the logistics status using the Get_StatusL message (state s;). Next, two answer messages (Status and StatusL messages) are sent as
answers by logistics department (L) peer (state so) and by the accounting department (A) peer (state s4). At this level (state s4), this process may be
iterated. Alternatively, it is possible to terminate the accounting as well as the logistics. A termination message is initiated by the buyer (B) peer
(state so) sent to the accounting department (A) peer, which forwards it to the logistics (L) peer (state sg). At this state (sg), both peers terminate.”

Following Definition 4, the communicating peers are obtained from the CP by projection. Figure 2 depicts the accounting department (A), the
buyer (B), and the logistics department (L).

Let us check realizability of this case study using our approach. The first step consists in identifying the set of basic conversation protocolsand
initializing the currently built CP as an empty set as follows.

o CP=¢

Basic transitions

Order 8 Deliver"—t Deliver - Conf “~* Delivery*—8
Chpo —=So — S, CPp1 =S — $2,CPpy = S2 - $3, CPp3 =53 —)
Get - Status® A Terminate? Get - StatusL*~* Terminatel”
CPps =S4 - S5, CPps =S4 — S CPps =S5 - S7,CPy7 =S¢ — S
A-=L
B-=A TerminatelL

Terminate

A-=L L-=A A->B
Deliver Deliver_Conf Delivery

A->B L-= A
Status StatusL

FIGURE 1 Simple procurement process within a virtual company

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

16 of 25 BENYAGOUB ET AL.
WILEY Software: Evolution and Process

Deliver ?

Deliver!

Terminate ! StatusL ? @ Terminatel ?

Deliver_Conf ? Status ?

Delivery |

Status || Get_Status ? Terminate ?

TerminateL !

StatusL ? Get_StatuslL |

PA

FIGURE 2 Projected peers of a simple procurement process within a virtual company

StatusLt A StatusA—B
CPpg =5S7 — S9,CPpg =S9 — S4.

Next step consists of applying the defined operators building a sequence of compositions leading to build the CP of Figure 1. Then, we apply
the different operators (sequence, branch, and loop) defined previously on a set of basic conversation protocols. These operators are applied only
if the sufficient conditions associated with each composition operator hold. The following sequence of operators application leads to the CP of
Figure 1.

* CPo =@ 59)(CP, chro),

(
e CP, = >>51P)(CP07 CPp1), CP 1 € ISeqF
o CPy =@ >(CP1, Py, CP 7€ ISeqF
® CP3 =@ 52)(CP2, chya); CP 3< ISeqF
o CPy= (+1S4CP)(CP3, {chhs, Pys}), CP4 €1SeqF A CP, e DCA CP4 € PCF
e CPs5 = ®(>>~5§9(CP4’ CPbs), CP 5 < ISeqF
* CPs =@ 56)(CPs, cpy), CP < ISeqF
* CP7 =® 57)(CPs, CPpg), CP7¢e ISeqF
o CPs=Qug, y(CP7, chyo), CPg € ISeqF

At the end, CPy is identical to the CP in Figure 1.

This example has been formalized in Event-B as an instance of the generic model introduced previously. Listing ?? extends the generic context
of Listing 1 by describing set of instances used as witnesses in the generic model. It defines set of peers (see axm1), set of messages (see axm2), set
of states (see axm3 and axm4), and basic CPs (see axm5). The obtained context is used as instances of the generic model using the RODIN plat-
form, and the ProB® animator is used to check this instantiation.

Context
Constants 0,51, 52,53, ..., Order, Deliver, Delivery_Conf, ...
Axioms
axml :partition(lPEERS,{A},{L},{B})
axm? ; partition(M ESSAGES, {Order}, { Deliver}, ...)
axm3 : partition(CP_STATES, {50}, {s1}, {s2}, {53}, {54}, {s5},...)
axm4 : partition(A_STATES, {s0_A}, {s1_A}, ...)
axm5 : CPs_B={s0r B Order+— A sl 1,51 = A Deliver — L+ 522, CP,... }
End

Listing 18: Simple procurement process within a virtual company instance

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL

17 of 25
WILEY Software: Evelution and Process

6.2 | A nonrealizable CP with choreography repair

Description. According to Basu et al,** the following case study describes the choreography, depicted in Figure 3, of a “simple file transfer protocol
where P; is a client asking for the file transfer, P, is a file server, and P; initializes the communication between client and server. This CP is
depicted in Figure 3. First, the client sends a message (init) to the server to request the server to start the transfer (ms). When the transfer is fin-
ished, the server sends the “transfer-finished” (mf) message, and the protocol terminates. However, the client may decide to cancel the transfer
before hearing back from the server by sending a “cancel-finished” message (mc) in which case the server responds with “transfer-finished” (mf)
message, which, again, terminates the protocol.”

When projected, the CP of Figure 3 produces three peers (see Figure 4).

The choreography specification of Figure 3 is not realizable. Let us illustrate this by defining a sequence of operators. We obtain the following
steps.

o CP=¢

Basic transitions

ItPS P2-5P1

InitP3—P2 P1.P2 P1-P2 P2P1
CPho =50 51, CPp = 1™ 55, CPyy =5, S5, CPp3 = 55" — 54, CPpy = 53" 5.

Composition
The two first operators, sequence and choice, are sufficient to detect violations of the sufficient conditions.

* CPo=® 5.0, (CP, CPyo) CP1 < ISeqF.
* CP1=® @ q,(CPo, CPyy) %, CP, ¢ I1SeqF.
L] CP2 = H’%P)(CPL {CPb2; CPb3}) X CP3 ¢ PCF

P1-> P2
\®Inﬁ3 - P?_/;;\ ms
i

FIGURE 3 Simple file transfer protocol choreography

ms | Init |
mf ? mc |
5) () ”
mf? mf!

P1

P2

FIGURE 4 Projected peers of a simple file transfer protocol choreography

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

18 of 25

BENYAGOUB ET AL.

WILEY Software: Evolution and Process

We observe that the CP4 and CP, corresponding to sequence and choice operators do not satisfy the corresponding sufficient conditions.
Listing 19 shows the Event-B context defined to instantiate the generic model for this case study.

Context
Constants
Axioms
axml :partition(lPEERS,{P1},{P2},{P3},...)
axm2 : partition(M ESSAGES, {Init}, {ms}, {mc},...)
axm3 :partition(CP_STATES, {50}, {s1}, {s2}, {s3},...)
axmd ; partition(A_STATES, {s0_P1},{s1_F1},...)
axm5 . CPs_B={s0—~ P33 Jnit—= P2 sl— sl Plems— P2~ 352 2,52 Pl=mcr— P2 533, }
End

Listing 19: Simple file transfer protocol choreography

We observe that the sufficient conditions are not satisfied by the CP in Figure 3 both by sequence and choice operators. The instantiation of
the generic model using such CP confirms the violation of sufficient conditions two times, at both the sequence and choice composition steps.

Thanks to the instantiation provided by the formal Event-B model we have built, it is possible to automatically detect the sufficient conditions
violations and therefore propose a recovery or a reparation allowing to re-establish correct communications. The reparation is based on the intro-
duction of synchronization messages exchanges. In this case, reparation shall restore the ISeqF- and PCF-violated properties. Two reparation cases
can be distinguished for both sequence and branch operators as follows.

e Sequence property repair. Two possible reparations are identified in Figures 5 and 6. Following the 1SeqF definition, we introduce a synchro-
nization transition with SyncO as exchanged message (highlighted with dashed line in Figures 5 and 6) establishing the 1SeqF condition.

e Branch properties repair. Similarly to sequence reparation, two reparation scenarios are possible according to the PCF definition. They are
depicted in Figures 7 and 8. The reparation of the choice transition requires the introduction of a synchronization message exchange Syncl

P1-> P2 P2-> P1

P3-» P1
. P3-> P2

(@™ —()- 5

mf FIGURE 5 ISeqF repair proposition 5

mf FIGURE 6 ISeqF repair proposition 6

Ny

N - -
P1-> P2 . P2-» P1 .
Sync1 mf

FIGURE 7 Parallel-choice freeness (PCF) repair proposition 7
P1->P2 P1-> P2 P2 -5 P1

Synct
. P3-5 P2 P11 P2 i ..
(o —(s)—(2)

FIGURE 8 Parallel-choice freeness (PCF)
repair proposition 8

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL 19 of 25

WILEY Sbftware: Evolution and Process

(highlighted with dashed line in Figures 7 and 8) preceding one of the branches transitions. This transition exchanges a synchronization message
between the same sender peer as the other branches and the receiver one.

The two proposed reparations give four reparation scenarios. Among these scenarios, we select the CP of Figure 9 to illustrate the correctness
of the reparation. Concretely, the CP defined in Figure 3 is changed to the one in Figure 9, by adding the new synchronization transitions
(highlighted with dashed lines). The obtained CP is realizable.

The projection of the repaired CP produces the peers of Figure 10.

Below, we show the sequence of operations allowing to build the repaired CP of Figure 9.

o CP=0

Basic transitions

’n[tP3~>P2 Syncopa —P1 g) CP Synclplapz mf?‘tf‘ﬂ mf’ZAPl
CPo =S — $1,CPp1=51 — £, CPp =5 — 53, CPy3 =s3 — 54, CPps =s37 — S5, CPps =54 — S¢ CPpg =55 — s7.

Composition

* CP1=® 5 q,(CP,CPy), v CP, € ISeqF

o CP=® (5 q,(CP1, CPy). v CP, e ISeqF

* CP3=® (¢, (CP1, {CPsg, CPys}), v CP3 e 1SeqF ACP£DC ACP3ePCF
o CPs=® 5)(CP3, CPua), v CP, e ISeqF

¢ CPs=® (5 ,(CPa, CPpy), ¥ CPs e ISeqF

Listing 20 describes the Event-B context defining the instances of the generic model (see Listing 1) defining the CP of Figure 9.

P1 -> P2 P2->P1
3 . c mf
- P3 - P1 e

P1 ->|:"2I= P2 - P1 l’

sync1

FIGURE 9 Repaired conversation protocol
(CP) of a simple file transfer protocol

®
O

I Synco ? Init!
a nco !
ms | e
Synci! « mel
() #s-
mt? 1 mt?
P71 - -p2-

FIGURE 10 Projected peers of repaired conversation protocol (CP) of a simple file transfer protocol

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

20 of 25

BENYAGOUB ET AL.

A\AZ B 2A'& Software: Evolution and Process

Context
Constants 50, 51, 52, 53, 54, 55, Init, Sync0, ms, mf, ...
Axioms
axml :partition(PEERS,{P1},{P2},{P3},...)
axm?2 :partition(M ESSAGES, {Init}, {Sync0}, {ms},{mf},...)
axm3 :partition{CP_STATES, {50}, {51}, {52}, {53}, {s4},...)
axmd . partition(lA_STATES, {s0_P1},{sl_Pl},...)
axm5 : CPs_B={s0— P3+— Initr—» P25l 1,51 P3 Sync0i—» Pl 2252 Pl ms— P2 52 3, ...}
End

Listing 20: Repaired choreography of a simple file transfer protocol instantiation

6.3 | Other case studies

The remainder of this section describes the other benchmarks we have used to validate our approach. For each CP, we present its informal
description, the associated LTS, and discuss realizability issues when our approach is applied.

e CS1: Access to web application is a real-world example depicted in Figure 11 and borrowed from Benyagoub et al.'® It describes the access
protocol to a web application. It involves three peers: a client (cl), a web interface (int), and a software application (appli). The CP starts with
a login interaction (connect) between the client and the interface, followed by the access request (access) triggered by the client. This request
can be repeated as far as necessary. Finally, the client decides to logout from the interface (logout). This CP is realizable. This case study is devel-
oped in Event-B. It is available at http://yamine.perso.enseeiht.fr/EventB_Realisability_Models.pdf.

e CS2: Database access through web application is an extension of CS1. The CP depicted in Figure 12 is borrowed from Glidemann et al.'® It
involves an additional peer with a database (db). The CP introduces a connection between interface and application (Setup), an access by the
client to the database, and a log by the application. The described CP is not realizable, but a reparation is given in Giidemann et al.*® This case
study is developed in Event-B. It is available at http://yamine.perso.enseeiht.fr/EventB_Realisability_Models.pdf.

e (CS3: Unrealizable online shopping addresses an online shopping application. Following case studies are developed in Event-B, available at
http://yamine.perso.enseeiht.fr/EventB_Realisability_Models.pdf.

— Unrealizable online shopping choreography. It is borrowed from Preda.’” This application starts asking price for goods from the seller. The
buyer communicates via PriceReq message with the seller. The seller computes the price of a product via offer message and sends the price
to the buyer. If the offer is accepted, the seller sends the payment details PayReq to the bank. Then, the buyer authorizes the payment via
the pay message. Then, either the payment successfully terminates, and the application ends with the bank acknowledging the payment to

the seller and the buyer, or the payment is aborted.

cl -> appli
cl-> int PP

connect

- cl->int
@: logout

access

¢l -> appli

: = access
int -> appli
setup

cl->im
logout

appli -> db
log

FIGURE 12 Access to a database through a web application

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL 21 of 25

WILEY Software: Evelution and Process

— Repaired online shopping. The choreography of Figure 13 is repaired using our reparation strategy to restore the set of sufficient condi-
tions. The proposed reparation is given in Figure 14.

e CS4: Unrealizable file transfer protocol presents a nonrealizable file transfer protocol choreography borrowed from Basu and Bultan.** This
case is described in Section 6.2, and a reparation is also proposed. This case study is developed in Event-B. It is available at http://yamine.
perso.enseeiht.fr/EventB_Realisability_Models.pdf.

e (CS5: Australian working visa describes a process for an Australian working visa application. It is borrowed from Ryu et alt®

Figure 15 shows a “graphical representation of a protocol for an Australian working visa application service. The visa application service is ini-
tially in the start state s, and service usage begins when a client sends a checkEligibility message, and the service moves to state s 4. In general,
clients seeking to work in Australia can proceed to state s¢ by filling in the application, submitting their work experience, and testing their
English ability, while clients reapplying for the working visa after visa expiry can go to the same state only by filling in the application and pro-
viding an employer reference letter. Overseas students who complete eligible studies in Australia proceed to state s3 by filling in the application
for overseas students and submitting graduation certificate and passport. Then, they check their application status and complete the applica-
tion ending at states s¢ or s;0.” This case study is developed in Event-B. It is available at http://yamine.perso.enseeiht.fr/EventB_Realisability_
Models.pdf.

Bank -> Buyer

Confirm

Buyer -> Bank
Pay

Bank -» Seller
Confirm

Seller -> Bank
PayReq

h 4

Seller-> Buyer

Offre
Bank -> Buyer

Abort

Buyer -> Seller
PriceReq

FIGURE 13 Unrealizable choreography of an online shopping

Bank -> Buyer
Confirm
Bank -» Seller

Confirm

Bank -> Buyer
Aport

Bank -) Buyer Buyer -> Bank

Seller -> Bank

Seller -> Buyer

Seller -> Buyer

Sync0
Buyer -> Seller

PriceReq

FIGURE 14 Choreography of an online
shopping

Client -> Appli Client -> Appli Client -> Appli Appli -> Client
Client == Appli FilllinApplicationAsStudent SubmitGraduationGertificat /~ ™\ SubmitPassport CheckApproval
> s4 >

CheckEligibility

Appli - Glient §

Client -> Appli
Cancel

»(s7)

>

Client -> Appli Client -> Appli Client - App
FillinApplication SubmitWorkExperience TestEnglishAbilty

Appli -> Client
Reassess

FIGURE 15 Protocol for Australian working visa

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

22 of 25

BENYAGOUB ET AL.

A\AZ B 2A'& Software: Evolution and Process

e (CS6: Protocol of a fictive game is a protocol of a fictive game borrowed from Lange et al'” and depicted in Figure 16. It consists of four peers
where
1. Alice (A) sends either bwin to Bob (B) or cwin to Carol (C) to decide who wins the game. In the former case, A fires the transition AB!bwin
whereby the message bwin is put in the FIFO buffer AB from A to B, and likewise in the latter case.

2. If B wins (that is the message bwin is on top of the queue AB and B consumes it by taking the transition AB?bwin), then he sends a noti-
fication (close) to C to notify her that she has lost. Symmetrically, C notifies B of her victory (blose).

3. During the game, C notifies Dave (D) that she is busy.
4. After B and C have been notified of the outcome of the game, B sends a signal (sig) to A, while C sends a message (msg) to A.

5. Once the result is sent, A notifies D that C is now free, and a new round starts.
This case study is developed in Event-B. It is available at http://yamine.perso.enseeiht.fr/EventB_Realisability_Models.pdf.

e CS7: Virtual enterprise describes a virtual enterprise CP described by Figure 1 and studied in Section 6.1. It is borrowed from Rinderle et al*®
and defines a realizable protocol. This case study is developed in Event-B. It is available at http://yamine.perso.enseeiht.fr/EventB_
Realisability_Models.pdf.

7 | ASSESSMENT

In this paper, we have presented an Event-B development composed of two parts. The first one concerns the definition of correct-by-construction
conversation protocols composition operators, which preserve realizability. The second one deals with a set of case studies, borrowed from the
literature, which have been proved to be realizable and/or have been repaired in order to restore realizability. Below, we provide an assessment
related to each of these parts.

7.1 | Event-B modeling

Table 3 gives the results of our experiments. One can observe that all the POs have been proved. A large amount of these POs have been proved
automatically using the different provers associated with the RODIN platform. Interactive proofs of POs required to combine some interactive
deduction rules and the automatic provers of RODIN. Few steps were required in most of the cases, and a maximum of 10 steps was reached.
The most complex proofs concerned event simulation, in particular for the asynchronous level, where gluing invariants were required in the
witnesses.

FIGURE 16 Protocol of a fictive game

TABLE 3 RODIN proofs statistics

Event-B Model Interactive Proofs Automatic Proofs Proof Obligations
Abstract model 36 (64.28%) 20 (35.72%) 56 (100%)

First refinement: synchronous model 41 (40.19%) 61 (59.81%) 102 (100%)
Second refinement: asynchronous model 74 (38.75%) 117 (61.25%) 191 (100%)

Total 151 (100%) 198 (100%) 349 (100%)

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL

23 of 25
A\ 2B A& Software: Evolution and Process

7.2 | Experiments on the case studies

More generally, we discuss here our experiments done on related works examples. Since the whole development has been proved for the pro-
posed operators, checking realizability of a given CP is reduced to checking that (a) the CP is built by composition of the defined operators and
(b) that sufficient conditions hold at each application of an operator. Therefore, the instantiation for the different case studies consists in defining
instances for the abstract level only.

To validate our approach and show the efficiency and the correctness of our Event-B model, we have chosen to use benchmarks issued from
the literature. Table 4 summarizes the results of different case studies presented above. It gives quantitative evaluation of different criteria. For
each case study, this table shows the numbers of states, peers, exchanged messages, and exchanged transitions. It states whether the CP is real-
izable or not and gives details of the operators used to build the CP. It also shows which properties are violated in case of nonrealizable CP. All case
studies include sequences, choices, self, or cycle loops. We also have addressed the case of parallel operator by interpreting this operator as inter-
leaving using the sequence and choice operators.

To give an idea of the number of built states during instantiation using the ProB animator, we consider the CS7—virtual enterprise case study
of Figure 1. As shown inTable 4, for a CP composed of 10 states and 10 transitions, up to 298 states and 322 transitions are generated by ProB on
the RODIN platform. They are used to check the correctness of instantiation (witnesses).

The whole Event-B model and all Event-B instantiations corresponding to the presented case studies are available online at http://yamine.
perso.enseeiht.fr/EventB_Realisability_Models.pdf.

7.3 | A scalable approach to build correct realizable CPs: Proofs vs model checking

The developments we have conducted are all handled by the RODIN platform, which supports a proof system together with a model checker,
namely, ProB.2 Both techniques have been set up in this work.

First, realizability has been proved once for all. Indeed, the development sketched in Section 5 is generic ones, and the events are parameter-
ized using the ANY-generalized substitution. Proceeding this way avoids to replay the proof and provides with a scalable approach for building
realizable CP. Moreover, it is not required to build the composed synchronous and asynchronous projected peers compositions. The provided the-
orems of Section 4.2.2 define conditions that are checked only once on the constructed CP. Moreover, they are checked on the constructs through
syntactic properties whose definitions entail scalability due to the structural nature.

Once the proofs are performed, it is sufficient to instantiate the model in order to build realizable CP. Therefore, they can be instantiated using
any witness that fulfills the conditions to trigger this event. However, an additional proof activity was also required. It concerns consistence of the
many axioms defined in this development (noncontradictory axioms). To establish axiom consistence, we have used model animation, using the
ProB model checker, by providing instances for the defined sets, relations, and functions showing that the axioms are correctly inhabited, ie, model
existence.

Second, establishing realizability for the particular conversation protocols corresponding to the case studies of Section 6 has been performed
again using the ProB model checker. The approach consists in interpreting the deferred sets of the generic development with specific values for
states, messages, basic conversation protocols, etc, and then triggering the events in order to build the final conversation protocol. Observe that
the ANY- generalized substitution defines an existential proof obligation for which a proof can be produced by showing witnesses. ProB has been

TABLE 4 Related works: Technical report

Realizable/ Properties Automatic Total Total
References States Peers Messages Trans Unrealizable Operators Violated Checking States Trans
CS1. Access to web application'® 2 3 3 3 Realizable > 0 - 9 (34%) 24 23
CS2. Database access through 4 4 5 5 Unrealizable >, U 1SeqF 7 (28%) 22 21

web application*®

CS3. Unrealizable online shopping®’ 7 3 6 7 Unrealizable >, +, U PCFISeqF 8(30%) 24 23
CS3. Repaired online shopping!” 9 3 8 9 Realizable > 4+ 0 - 21 (100%) 21 20
CS4. Unrealizable file transfer protocol14 5 2 3 4 Unrealizable >+ PCF 90 (63%) 98 32
CS4. Repaired file transfer protocol* 5 2 3 5 Realizable >+ - 50 (33%) 29 22
CS5. Australian working visal® 20 2 21 21 Realizable > +,0 - 90 (52%) 29 32
CS6. Protocol of a fictive game'? 5 4 8 8 Unrealizable >, + O PCF 6 (62%) 9 8
CS7. Virtual enterprise®® 10 3 9 10 Realizable > + 0 - 190 (63%) 298 322

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

24 of 25

BENYAGOUB ET AL.

A\AZ B 2A'& Software: Evolution and Process

set up to check all the properties related to the instantiation. Another alternative would consist in developing a new model refining the generic one
in which witnesses are proved to be correct. This alternative may be used when model checkers do not scale up but may require interactive

proofs.

8 | RELATED WORK

There exists much work on the verification of realizability, eg, Basu et al, Fu et al, Lohmann and Wolf, and Basu and Bultan.>?°-?? Let us focus on
related approaches, which propose solutions for ensuring realizability of a choreography. Carbone et a® identify three principles for global
descriptions under which they define a sound and complete end-point projection, ie, the generation of distributed processes from the choreogra-
phy description. If these rules are respected, the distributed system obtained by projection behaves exactly as specified in the choreography. The
same approach is chosen for BPMN 2.0 choreographies.?* Qiu et aP> modify their choreography language to include new constructs (dominated
choice and loop). During projection of these new operators, some communication channels are added to enforce the peers to respect the original
choreography specification. However, these solutions prevent the designer from specifying what (s)he wants to and complicate the design by
obliging the designer to make explicit extraconstraints in the specification, eg, by associating dominant roles with certain peers. Decker et al pro-
pose a Petri net-based models for choreographies and algorithms to check realizability and local enforceability. A choreography is locally enforce-
able if interacting peers are able to satisfy a subset of the requirements of the choreography. To ensure this, some exchanged messages in the
distributed system are disabled. Salaiin et a’” propose automated techniques to check the realizability of collaboration diagrams for different com-
munication models. Like in our reparation strategy, in case of nonrealizability, this approach proposes to add messages directly to the peers to
enforce realizability.

As compared with the above-mentioned related works, in our work, verification complexity is significantly reduced since our approach does
not require the projected peers nor the recomposition of the distributed system to check realizability. Instead, we rely on sufficient conditions,
defined at the CP level. There is no need to build synchronous or asynchronous peers compositions. So time and space complexities are avoided.

9 | CONCLUSION

This paper presents an a priori approach to build realizable CPs. It advocates the use of a correct-by-construction approach, which uses a set of
composition operators that preserve realizability while building incrementally a given CP. The presented approach has been completely formalized
in a generic Event-B development. We have used the inductive process supplied by Event-B to show that each operator with a realizable CP as an
input produces another realizable CP (realizability preservation). We have defined language constructs allowing to incrementally build complex
realizable CPs from a set of basic realizable ones. Moreover, we have shown that the proposed development is generic and can be instantiated
to any set of basic and composite CPs, showing scalability of the approach. We also propose a novel incremental reparation technique based
on our sufficient conditions.

In this paper, we have validated and experimented our approach and its formal Event-B models on benchmark case studies commonly used in
the literature. The interest of this work is double. On the one hand, these benchmarks are used to validate our approach through instantiation. On
the other hand, they show that the defined sufficient conditions are not restrictive and cover the variety of case studies available in the literature,
in particular for the definition of business processes.

Moreover, this paper shows that the proposed approach scales to CPs of arbitrary sizes. It does not require to build synchronous or asynchro-
nous peers compositions like in traditional a posteriori approaches.

As a short-term perspective, we plan to formalize our reparation technique using Event-B in order to support on the fly CP reparation instead
of checking the whole repaired CP. A new reparation event should be added to our Event-B model.

We also aim at extending our model with a new operator to enable composition of entire CPs instead of building CPs from scratch that
requires incremental composition using basic CPs. As a long-term perspective, three main research paths have been identified.

First, in addition to the sufficient conditions we defined, we will propose the definition of necessary conditions for specific conversation pro-
tocols templates. Second, in the same manner as for finite messages exchanges, studying the case of infinite messages exchanges should be stud-
ied for specific cases of conversation protocols. Finally, we aim at providing the designers with an engine for automatic instantiation of
realizable CPs.

ACKNOWLEDGMENTS

The research reported in this paper has been partly supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal
Ministry of Science, Research and Economy, and the Province of Upper Austria in the frame of the COMET Center SCCH.

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

BENYAGOUB ET AL

25 of 25
A\ 2B A& Software: Evolution and Process

ORCID

Sarah Benyagoub '} https://orcid.org/0000-0002-6859-1092
Atif Mashkoor 2} https://orcid.org/0000-0003-1210-5953

REFERENCES

1. Benyagoub S, Ouederni M, Ait-Ameur Y, Mashkoor A. Incremental construction of realizable choreographies. In: NASA Formal Methods—NFM 2018;
2018:1-19.

2. Benyagoub S, Ouederni M, Ait-Ameur Y, Mashkoor A. Scalable correct-by-construction conversation protocols with Event-B: validation, experiments
and benchmarks. In: 23rd International Conference on Engineering of Complex Computer Systems (ICECCS); 2018:209-212.

3. Benyagoub S, Ouederni M, Ait-Ameur Y, Mashkoor A. Handling reparation in incremental construction of realizable conversation protocols. In: New
Trends in Model and Data Engineering—MEDI International Workshops, DETECT, MEDI4SG, IWCFS, REMEDY; 2018:159-166.

Brand D, Zafiropulo P. On communicating finite-state machines. J ACM (JACM). 1983:323-342.
Basu S, Bultan T, Ouederni M. Deciding choreography realizability. In: Proc of POPLS$12 ACM; 2012:191-202.
Abrial JR. Modeling in Event-B. System and Software Engineering, Cambridge, Ed. 2010.

N o v s

Abrial JR, Butler M, Hallerstede S, Hoang TS, Mehta F, Voisin L. RODIN: an open toolset for modelling and reasoning in Event-B. Int J Softw Tools Technol
Transfer. 2010;12(6):447-466.

Leuschel M, Butler MJ. ProB: a model checker for B,; 2003:855-874.
Hopcroft JE, Ullman JD. Introduction to Automata Theory, Languages and Computation: Addison Wesley; 1979.

o ®

10. Farah Z, Ait-Ameur Y, Ouederni M, Tari K. A correct-by-construction model for asynchronously communicating systems. Int J Softw Tools Technol Trans-
fer. 2017;19(4):465-485.

11. Finkel A, Lozes E. Synchronizability of communicating finite state machines is not decidable. In: 44th International Colloquium on Automata, Languages,
and Programming, ICALP; 2017:122:1-122:14.

12. Abadi M, Lamport L. The existence of refinement mappings. Theor Comput Sci. 1991:253-284.
13. Rinderle S, Wombacher A, Reichert M. On the controlled evolution of process choreographies. In: Proc. of ICDE; 2006:100-124.

14. Basu S, Bultan T. Automated choreography repair. In: Fundamental Approaches to Software Engineering - 19th International Conference, FASE 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Pro-
ceedings. 9633 of Lecture Notes in Computer Science Stevens P, Wasowski A, eds. Springer; 2016:13-30.

15. Benyagoub S, Ouederni M, Ait-Ameur Y. Towards correct evolution of conversation protocols. In: Proc of VECOS516; 2016:193-201.
16. Giidemann M, Salaiin G, Ouederni M. Counterexample guided synthesis of monitors for realizability enforcement. In: Proc. of ATVA$12; 2012:238-253.

17. Preda MD, Gabbrielli M, Giallorenzo S, Lanese |, Mauro J. Dynamic choreographies—safe runtime updates of distributed applications. In: Proc of COOR-
DINATIONS15; 2015:67-82.

18. Ryu SH, Casati F, Skogsrud H, Benatallah B, Saint-Paul R. Supporting the dynamic evolution of web service protocols in service-oriented architectures.
ACM Trans Web (TWEB). 2008;2(2):13.

19. Lange J, Tuosto E, Yoshida N. From communicating machines to graphical choreographies. In: Proceedings of the 42nd Annual ACM POPL;
2015:221-232.

20. Fu X, Bultan T, Su J. Conversation protocols: a formalism for specification and verification of reactive electronic services. Theoretical Computer Science.
2004:19-37.

21. Lohmann N, Wolf K. Realizability is controllability. In: International Workshop WSFM; 2009:110U-127.
22. Basu S, Bultan T. On deciding synchronizability for asynchronously communicating systems. Theor Comput Sci. 2016;656:60-75.
23. Carbone M, Honda K, Yoshida N. Structured communication-centred programming for web services. In: Proc of ESOP507; 2007.

24. Rosing M, White S, Cummins F, Man dH. Business process model and notation—BPMN. The Complete Business Process Handbook: Body of Knowledge
From Process Modeling to BPM, Volume I; 2015:429-453.

25. Qiu Z, Zhao X, Cai C, Yang H. Towards the theoretical foundation of choreographyProceedings of the 16th international conference on World Wide
Web. ACM; 2007:973-982.

26. Decker G, Weske M. Local enforceability in interaction Petri nets. In: International Conference on Business Process Management. Springer;
2007:305-319.

27. Salaiin G, Bultan T. Realizability of choreographies using process algebra encodings. In: International Conference on Integrated Formal Methods;
2009:167-182.

How to cite this article: Benyagoub S, Ait-Ameur Y, Ouederni M, Mashkoor A, Medeghri A. Formal design of scalable conversation pro-
tocols using Event-B: Validation, experiments, and benchmarks. J Softw Evol Proc. 2020;32:€2209. https://doi.org/10.1002/smr.2209

‘[1202/v0/£1] 18 [60TTIWS/2001°01/4Pdo/10p/ - €81°TST°8L0°0F 1 - 1BNsIoAIUY) 10]doy] souueyor] Aq pajutig

